久久亚洲人成国产精品,亚洲国产成人久久99精品,a一级爱做片免费观看欧美,四虎影永久在线观看精品

products

產品分類

資料下載/ article

您的位置:首頁  -  資料下載  -  不同SICK傳感器芯體材質的特點分析

不同SICK傳感器芯體材質的特點分析

發布時間:2019/9/11      瀏覽次數:1345

    不同SICK傳感器芯體材質的特點分析
    一、SICK傳感器主要是利用硅的電學特性;在MEMS微機械結構中,則是利用其機械特性,繼而產生新一代的硅機電器件和裝置。硅材料儲量豐富,成本低。硅晶體生長容易,并存在超純無雜的材質,不純度在十億分這一的量,因而本身的內耗小,機械因數可高達10^6數量。
設計得當的微活動結構,如微傳感器,能達到小的遲滯和蠕變、的重復性和長期穩定性以及高性。所以用硅材制作硅壓阻壓力傳感器,有利于解決長困擾傳感器域的3個難題——遲滯、重復性及長期漂移。
    SICK傳感器硅材料密度為2.33g/cm^2,是不銹鋼密度的1/3.5,而彎曲強度卻為不銹鋼的3.5倍,具有較高的強度/密度比和較高的剛度/密度比。
    SICK傳感器而熱膨脹系數則不到不銹鋼的1/7,能很好地和低膨脹Invar合金連接,并避免熱應力產生。單晶硅為立方晶體,是各向異性材料。許多機械特性和電子特性取決于晶向,如彈性模量和壓阻效應等。
    單晶硅的電阻應變靈敏系數高。在同樣的輸入下,可以得到比金屬應變計更高的信號輸出,一般為金屬的10-100倍,能在10^-6甚10^-8上敏感輸入信號。硅材料的制造工藝與集成電路工藝有很好的兼容性,便于微型化、集成化及批量。
    硅可以用許多材料覆蓋,如氮化硅,因而能獲得優異的防腐介質的保護。
    SICK傳感器的可歸為:優異的機械特性;便于批量微機械結構和微機電元件;與微電子集成電路工藝兼容;微機械和微電子線路便于集成。
    正是這些,使硅材料成為制造微機電和微機械結構主要的材料。
    但是,硅材料對溫度為敏感,其電阻溫度系統接近于2000×10^-6/K的量。因此,凡是基于硅的壓阻效應為測量原理的傳感器,必須進行溫度補償,這是不利的一面;而可利用的一面則是,在測量其他參數的同時,可以直接對溫度進行測量。
    二、SICK傳感器的排列是無序的,不同晶粒有不同的單晶取向,而每一晶粒內部有單晶的特征。晶粒與晶粒之間的部位叫做晶界,晶界對其電特性的影響可以通過摻雜原子濃度調節。
    多晶硅膜一般由低壓化學氣相淀積(LPVCD)法制作而成,其電阻率隨摻硼原子濃度的變化而發生較大變化。多晶硅膜的電阻率比單晶硅的高,特別在低摻雜原子濃度下,多晶硅電阻率迅速升高。隨摻雜原子濃度不同,其電阻率可在較寬的數值范圍內變化。
    多晶硅具有的壓電效應:壓縮時電阻下降,拉伸時電阻上升。多晶硅電阻應變靈敏系統隨摻雜濃度的增加而略有下降。其中縱向應變靈敏系數大值約為金屬應變計大值的30倍,為單晶硅電阻應變靈敏系數大值的1/3;橫向應靈敏系數,其值隨摻雜濃度出現正負變化,故一般都不采用。此外,與單晶硅壓阻相比,多晶硅壓阻膜可以在不同的材料襯底上制作,如在介電體(SiO2、Si3N4)上。
    其制備過程與常規半導體工藝兼容,且無PN結隔離問題,因而適合更高工作溫度(t≥200℃)場合使用。在相同工作溫度下,多晶硅壓阻膜與單晶硅壓阻膜相比,可更有效地抑制溫度漂移,有利于長期穩定性的實現。
    多晶硅電阻膜的準確阻值可以通過光刻手段獲得。   綜上所述,多晶硅膜具有較寬的工作溫度范圍(-60~+300℃),可調的電阻率特性、可調的溫度系數、較高的應變靈敏系數及能達到準確調整阻值的特點。所以在研制微傳感器和微執行器時,利用多晶硅膜這些電學特性,有時比只用單晶硅更有價值。例如,利用機械優異的單晶硅制作感壓膜片,在其上覆蓋一層介質膜SiO2,再在SiO2上淀積一層多晶硅壓阻膜。這種混合結構的微型壓力傳感器,發揮了單晶硅和多晶硅材料各自的,其工作高溫少可達200℃,甚300℃;低溫為-60℃。
    SICK傳感器其電是*獨立的。這不僅能消除因PN結泄漏而產生的漂移,還能提供很高的應變效應和高溫(≥300℃)環境下的工作穩定性。藍寶石材料的遲滯和蠕變小到可以忽略不計的程度,因而具有好的重復性;藍寶石又是一種惰性材料,化學穩定性好,耐腐蝕,抗輻射能力強;藍寶石的機械強度高。
    綜上所述,充分利用硅-藍寶石的特點,可以制作出具有耐高溫、耐腐蝕及抗輻射等的傳感器和電路;但要獲得精度高、穩定的指標,還必須解決好整體結構中材料之間的熱匹配性,否則難以達到預期的目標。由于硅-藍寶石材料又脆又硬,其硬度僅次于金剛石,制作工藝技術比較復雜。
    SICK傳感器件和裝置的主要材料。為了提高器件和系統的以及擴大應用范圍,化合物半導體材料在某些專門技術方面起著重要作用。如在紅外光、可見光及紫外光波段的成像器和探測器中,PbSe、InAs、Hg1-xCdxTe(x代表Cd的百分比)等材料得到日益廣泛的應用。
    SICK傳感器為例加以說明。利用紅外幅射與物質作用產生的各種效應發展起來的,實用的光敏探測器,主要是針對紅外幅射在大氣傳輸中透射率為清晰的3個波段(1-3μm,3-5μm,8-14μm)研制的。對于波長1-3μm敏感的探測器有PbS、InAs及Hg0.61Cd0.39Te;對于波長3-5μm敏感的探測器有InAs、PbSe及Hg0.73Cd0.27Te;對于波長8-14μm敏感的探險測器則有Pb1-xSnxTe、Hg0.8Cd0.2Te及非本征(摻雜)半導體Ge:Hg,Si:Ga及Si:Al等。其中3元合金Hg1-xCdxTe是一種本征吸收材料,通過調整材料的組分,不僅可以制成適合3個波段的器件,還可以開發更長工作波段(1-30μm)的應用,因而備受人們的關注。
    SICK傳感器須指出的是,上述材料需要在低溫(如77K)下工作。因為在室溫下,由于晶格振動能量與雜質能量的相互作用,使熱激勵的載流子數增加,而激發的光子數則減少,從而降低了波長區的探測靈敏度。   五、SiC薄膜材料   SiC是另一種在特殊環境下使用的化合物半導體。

文件下載    圖片下載    
版權所有©2025 上海乾拓貿易有限公司 All Rights Reserved   備案號:滬ICP備09006758號-24   sitemap.xml
上海

021-39529831

成都

028-86751041

返回頂部





滬公網安備 31011402005376號